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ON THE TIME}FREQUENCY ANALYSIS OF SIGNALS THAT
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The use of the short-time Fourier transform and the wavelet transform implemented using
the new harmonic wavelets for analyzing the time variation of the spectral contents of
exponentially time-decaying signals is studied in the present investigation. Focus is also
placed on how well these methods can recover the decay constant of each frequency
component in the signals in a relatively narrow bandwidth situation. Both arti"cial and
experimentally recorded signals have been used. Results suggest that the short-time Fourier
transform is in general more reliable than the wavelet transform for the present purpose. The
short-time Fourier transform also gives excellent recovery of the decay constants if the
signals are made up of discrete frequency components.
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1. INTRODUCTION

Non-stationary signals appear in many branches of engineering. Examples include the
vibration patterns of a diesel engine crank-shaft [1] and the turbulent pressure #uctuations
within an air jet [2]. Both the frequency contents of these signals and their magnitudes vary
with time so that the conventional Fourier transform method cannot deal with these signals
properly. Rather, the approach of time}frequency analysis [3] provides a means to handle
the problem.

The concept of time}frequency analysis is not a very new one. Owing to its importance in
dealing with non-stationary signals, many algorithms for its implementation have been
developed in the past few decades. Typical examples are the Wigner}Ville distribution [4],
short-time Fourier transform [5] and more recently, the wavelet transform [6]. The
advantages and drawbacks of these methods were discussed [7]. There are also studies
showing that these methods are somewhat related to each other [8]. Newland [9, 10]
suggests that the wavelets allow the changing spectral composition of a non-stationary
signal to be measured and presented in the form of a time}frequency map and thus, are
useful as a tool for vibration signal analysis. Nowadays, these is much research related to
the engineering applications of wavelets. Some examples are the analysis of the responses of
a slipping foundation by Basu and Gupta [11] and the investigation on #ow turbulence by
Farge [12].

Harmonic signals that decay exponentially with time appear frequently in the "eld of
acoustics and vibration. The time constants of such decays describe the rate of energy loss
and have signi"cant applications. It is well known that the vibration signal of a slightly
Coulomb damped vibrating system of one-degree-of-freedom decays exponentially with
time and the time constant is important for the estimation of the damping ratio [13]. Also,
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the decay of sound energy in a reverberant room with limited absorption shows an
exponential relationship with time [13]. The time constant of such decay gives the
reverberation time and thus an estimate of the sound absorption in the enclosure. Though
there seems to be a general belief that the wavelets are very useful in the analysis of
non-stationary signals and there are electronic devices that utilize them to measure the
reverberation times of enclosures in octave bands [7], it appears to the author that the
performance of the various time}frequency analysis methods on dealing with these
important signals is not well understood. An example of this can be found in Martin et al.
[14] where the time}frequency maps of a concert hall impulse response obtained by using
four di!erent approaches are very di!erent so that it is very hard to conclude which one is
correct.

In the present investigation, the short-time Fourier transform and the wavelet transform
using the new harmonic wavelets developed by Newland [15] are performed on the
exponentially time-decaying signals. These wavelets provide both variable and constant
bandwidth transforms and thus are better than the conventional ones, such as the Gabor
wavelets [16]. The focus here is on how these transforms reveal the time variations of the
spectral contents and, more important, the decay constants of the signals. The present
investigation deals with relatively narrow bandwidth situations. It is hoped that the results
so obtained will provide useful information on the instrumentation selection for the studies
of building acoustics and vibration.

2. THE TIME-FREQUENCY ANALYSIS METHODS

Only two transforms, the short-time Fourier transform (STFT) and the wavelet
transform (WT), are studied in the present investigation as they are the most common ones
used nowadays and are relatively easy to implement. In this section, the performance of
these methods in handling an exponentially time-decaying signal is analyzed theoretically.
The time signal f (t) is assumed to take the form of

f (t)"Ae!at e ju
0
t , (1)

where a is the decay constant, u
0

the frequency of the signal and A"f (0).

2.1. SHORT-TIME FOURIER TRANSFORM

A window function w is required in the STFT F (u, q) as

F (u, q)"
1

2n P
=

~=

f (t)w (t!q) e!jut dt. (2)

Substituting equation (1) into equation (2), F vanishes if uOu
0

and

F (u
0
, q)"

A

2n P
=

~=

e!at w (t!q) dt"
A

2n
e!aq P

=

~=

w (t@) e!at @ dt@ . (3)

Since a is constant, it follows that the magnitude of F (u
0
, q) decays exponentially with the

time position q no matter what w is. Once a is found, A can be obtained. It should be noted
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that the above discussion is valid for a signal having more than one harmonic component
provided that the sampling rate and the frequency resolution are well chosen. However, it
should be noted that STFT may not be able to deal with a very rapid rise of signal
magnitude. One can deduce that when the unit step function u (t!t

0
) is added to the signal

f (t), equation (3) will become

F (u
0
, q)"

A

2n
e!aq P

=

~=

u(t@#q!t
0
) w (t@) e!at @ dt@ (4)

so that F (u
0
, q) may not vanish for q(t

0
. The magnitude of F (u

0
, q) decays exponentially

with q when q!t
0

is greater than half the window width. The major drawback of STFT is
on its constant time and frequency resolutions. This is discussed in many papers (for
instance, Newland [9]) and thus is not repeated here.

2.2. WAVELET TRANSFORM

The wavelet transform,= (q), is de"ned as

=(q)"P
=

~=

f (t) g* (t!q) dt, (5)

where q is the time position, g is the wavelet function and the asterisk denotes a complex
conjugate [17]. The harmonic wavelets take the form

g (t)"
exp ( j2nnt)!exp( j2mnt)

j2nt (n!m)
, (6)

where m and n are real constants and n'm [15]. The frequency resolution and the centre
frequency of this transform are 2(n!m)n and (n#m)n respectively. The major advantage
of this type of wavelets over the traditional ones is that they provide high #exibility in the
choice of transform bandwidth.

Substituting equations (1) and (6) into equation (5), one obtains

=(u, q)"Ae!at e ju
0
q P

=

~=

e!at@ e ju
0
t@

j 2n (n!m) t@
(e!j2nmt@

!e!j2nnt@) dt@ , (7)

where u"(n#m)n. Though the magnitude of= (u, q) decreases exponentially with time,
the integral involved does not converge. In practice, there will be no signal for t(0. If one
considers

f (t)"Ae!at e ju
0
t u (t!t

0
) ,

where u is the unit step function as in the case of STFT, then
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and the integral exists. It can then be shown that
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where E
1

is the exponential integral [18], a"a#j (2nn!u
0
) and b"a#j (2nm!u

0
).

Owing to the branch cut of e!z/z, which is the negative real axis on the complex plane [19],
D= (u, q) D is relatively larger when q't

0
and 2nm(u

0
(2nn. For u

0
(2nm or u

0
'2nn,

D= (u, q) D is still "nite. However, it can be shown at a "xed q that the magnitude of the
integral in equation (8) decreases with increasing di!erence between u

0
and the centre

frequency of the transform approximately as (a2#(u!u
0
)2)~0>5 for low-frequency

resolution.
Therefore, the harmonic wavelets are in principle capable of distinguishing two time
#uctuating components of relatively close frequencies upon a suitable choice of the
bandwidth. This is essentially not true for the constant-Q-type wavelet transform. For
example, if g (t) is replaced by the Gabor wavelet

1

4Jn S
t
ac

exp(!(tt/ac)2#jtt/a)

where t, c and a are constants,

D= (a, q) D"
A Jac

4Jn
exp (c2 a2 a2/8n2!(2n!u

0
a)2 ) e~aq . (9)

Though the magnitude of this Gabor transform decays exponentially with q, it can be
observed that D= D does not vanish very quickly within a relatively large neighbourhood
about a"2n/u

0
. One can verify this by substituting u

0
"u

1
#*u (*uP0) and

a"2n/u
1

into equation (9).

3. MULTI-FREQUENCY SIGNALS

This section describes the performance of STFT and WT in the estimation of the decay
constant of each frequency component in a signal. This signal may be arti"cial or obtained
from the experiment. It can be noted that both methods are suitable for our purpose if the
signal concerned contains only one frequency component and thus, this kind of signal will
not be considered any further. In the present study, the Hann window [16] is used in the
STFT.

3.1. SIGNAL WITH DISCRETE FREQUENCY COMPONENTS

We consider a signal containing three discrete frequency components:

f (t)"A
1
e!t/2 e j20nt

#A
2
e !t/4 e j30nt

#A
3
e!t e j44nt . (10)

Figure 1(a) shows the time}frequency map of 20 log
10

DF (u, q) D of f (t) obtained using the
STFT with 50% overlap and all As equal unity. The frequency resolution is 0)122 Hz. The



Figure 1. Time}frequency map of the signal given by expression (10). (a) 20 log
10

DF (u, q) D; (b) 20 log
10

D= (u, q) D.

TIME-FREQUENCY ANALYSIS OF SIGNALS 245
distinctive frequency components are all recovered. However, the corresponding map of
20 log

10
D= (u, q) D obtained from WT by using the FFT method of Newland [17] looks

disappointing (Figure 1(b)), though the major frequency components are recovered. The
situation is greatly improved when the bandwidth is increased to about 5 Hz or if the



Figure 2. Time}decay curves of frequency components in expression (10). (a) STFT; (b) WT:**, 10 Hz; } ) },
15 Hz; * *, 22 Hz.

246 S. K. TANG
convolution formula (equation (5)) is employed. The corresponding map of
20 log

10
D= (u, q) D is very similar to Figure 1(a) and thus is not presented. In the foregoing

discussions, all maps related to WT, unless otherwise stated, are obtained by using
equation (5).

Figures 2(a) and 2(b) show the time decays of the three components in f (t) recovered
using STFT and WT respectively. The decay constants obtained from STFT are excellent
and they do not depend on the percentage of overlapping. Some irregularities are observed
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on the time decay curves obtained by WT (Figure 2(b)). While the decay constants of the 10
and 22 Hz components are retrieved by WT with high accuracy, that of the 15 Hz
component is 0)22, which is about 10% lower than the right value (0)25). The results
obtained using the constant-Q-type wavelet transform are poor and thus are not included in
the present paper.

3.2. EXPONENTIALLY DECAYING BROADBAND SIGNALS

The "rst type of signal considered in this section is a white noise n(t) with a decay
factor e!t/4 (Figure 3). Thus, f (t)"n(t) e!t/4. The white noise is produced numerically by
the algorithm of Kuo and Morgan [20]. We analyze the time decay of each narrow
frequency band to see whether the correct decay constant can be found. In general, the
broadband signals will result in very rough time decaying curves and thus, the backward
integration method of Schroeder [21] is applied to determine the decay constants in this
section.

Figure 4 illustrates the variation of decay constants with frequency obtained by STFT
and WT. The frequency resolution * f is 0)98 Hz. For STFT, a 50% overlap is adopted.
Though STFT does not reveal the exact decay constant for each frequency component, the
mean is at 0)25 s~1 and the standard deviation (S.D.) is 0)019s~1. This tends to show that
the results of STFT are still satisfactory. The corresponding results obtained from WT
#uctuate across the whole frequency range with a mean of 0)27 s~1 and an S.D. of 0)045 s~1.
It can be shown by the statistical inferential method [22] that the results obtained from WT
di!er considerably from 0)25 at the 95% con"dence level. These two data sets also di!er
from each other at the 95% con"dence level. WT does not perform with reasonable
accuracy for this decaying white noise.

The second signal considered in this section is a broadband one with frequency
components of di!erent decay rates so that the magnitudes of the frequency components are
Figure 3. A white noise decaying exponentially with time.



Figure 4. Variation of decay constants of white noise (Figure 3) with frequency. (a) STFT; (b) WT.
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di!erent for t'0:

f (t)"
N
+
i/1

e!a
i
t e!j (u

i
t#/

i
) , (11)

where a
i

and u
i
/2n(" f

i
) are the decay constant and frequency of the ith component,

respectively, and /
i
a random phase factor. Without loss of generality, the sampling rate f

s
is

assumed to be 1000 Hz and N"512. Also, u
i`1

!u
i
"n f

s
/N"u

1
. This kind of signal is

important in room acoustics where the sound absorption of an enclosed space increases
with frequency [13].

The signal considered is shown in Figure 5. It is the real part of equation (11) with
a
i
"0)8!0)5 ((i!512)/512)2. This choice of a

i
, though arbitrary, can still re#ect the reality

in room acoustics where the sound absorption coe$cient increases with sound frequency. It
can be observed that the sum of the frequency components produces a time #uctuation that
does not appear to decay exponentially with time. This kind of decay curve is commonly
found in the measurement of room impulse response.

The dashed lines in Figure 6 show the contours of the time}frequency map of the
signal in Figure 5 obtained using STFT with 50% overlap. The solid lines represent
the exact results obtained directly from equation (11). The matching is very good,
suggesting that STFT reveals correctly the decay constants a

i
s as well as the time variations

of the spectral details of the signal. Figure 7 summarizes the variation of the decay constant
with frequency obtained by WT. The performance of WT is satisfactory over the
whole frequency range except near the low and high ends of the range. The corresponding
results obtained by STFT collapse well with the theoretical curve and thus are not included
in Figure 7.



Figure 5. Broadband signal with decay rate that varies with frequency.

Figure 6. Time}frequency distribution of spectral energy of broadband signal (Figure 5). **, Ideal;
* * , STFT.
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3.3. EXPERIMENTAL VIBRATION SIGNAL

The signal in this section was obtained experimentally from an accelerometer mounted
"rmly to the edge of a wooden board supported on four springs and there was a mass
symmetrically clamped on the board. The wooden board was set into vibration by releasing



Figure 7. Variation of decay constant with frequency obtained by the wavelet transform. **, a
i
"

0)8}0)5 ((i!512)/512)2; } } }, WT.

Figure 8. Vibration signal from accelerometer.
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a force initially applied vertically onto the mass. No arti"cial damping material was
involved and thus air was the main source of damping. One can expect that there will be six
modes of vibration due to the six degrees of motion freedom. Also, the mode frequencies are
not expected to be high.

The vibration signal is shown in Figure 8, which resembles the arti"cial signal of equation
(10). It is obvious that this signal contains several low-frequency components overlapping



Figure 9. Spectrum of vibration signal (Figure 8) obtained by conventional Fourier transform.
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with each other. Figure 9 gives the results obtained from the conventional Fourier
transform taken over the whole period of measurement with a frequency resolution of about
0)23 Hz. It can be observed that there are prominent spectral peaks at 7)7, 10)8, 14)3, 18)0,
19)7 and 21)6 Hz, which should be related to the six modes of vibration. The vibration signal
thus contains six discrete frequency components as expected.

The time}frequency maps obtained from STFT and WT with a frequency resolution of
0)23 Hz are presented in Figures 10(a) and 10(b) respectively. The STFT reveals clearly the
existence of the six vibration modes. However, the WT gives a noisier map and can only reveal
the three relatively stronger frequency components. Other components are not clearly
recovered. The situation is worse at lower frequencies. Also, the frequency peaks in the WT
time-frequency map are not as distinctive as those obtained by STFT at q near to 0 (Figure 11).

Figure 12 shows the time variations of the magnitudes of the three major components in
the vibration signal recovered by STFT and WT (7)7, 14)3 and 19)7 Hz). It is noticed that the
results at 14)3 Hz obtained from STFT reveal an approximately exponential time decay at
q approximately greater than 1 s. For the other two components, the signature of
exponential decay starts from q"0 s. The corresponding data from WT do not indicate any
possibility of having exponential decay signal. This situation is not improved even after
applying the backward integration. Since the vibration velocity of the wooden board is
small, the air damping force is in general proportional to velocity of motion. This should
lead to an exponential time decay of the magnitude of each frequency component in the
vibration signal. The results from STFT appear more reasonable and logical.

3.4. IMPULSE RESPONSE OF A ROOM

The "nal signal considered in the present investigation was obtained from a sound pulse
created inside a reverberant room. It is expected that the low-frequency components can



Figure 10. Time}frequency map of vibration signal (Figure 8). (a) 20 log
10

D F (u, q) D; (b) 20 log
10

D= (u, q) D.
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undergo several re#ections at the room boundaries while the high-frequency ones decay
relatively quickly with time. The signal being analyzed, which is also the impulse response of
the room, is shown in Figure 13. It is typical in room acoustics. It also looks similar to the
broadband signal shown in Figure 6. The sampling rate was 12 000 samples/s and the



Figure 11. Spectral contents of vibration signal at q"0)5 s: **, STFT; } }, WT.

Figure 12. Time variations of frequency component magnitudes: **, 7)7 Hz; } }, 14)3 Hz; } ) }, 19)7 Hz.
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anti-aliasing "lter was applied to provide a low pass at 5000 Hz. Since we are dealing with
room reverberation in this section, the frequency resolution need not be high as in many
studies of room acoustics (for instance, Hodgson et al. [23]).

Figure 14(a) shows the time}frequency map of the room impulse response obtained by
STFT with a frequency resolution of about 23)5 Hz and 50% overlap without backward
integration. The pulse contains higher energy within the frequency band from about 100 to
1100 Hz. The low spectral values of frequencies below 100 Hz may be due to the sound
source or the acoustical property of the room, which are outside the scope of the present
study. The map also suggests that there is a 2100 Hz sound prevailing throughout the



Figure 13. Impulse response of sample room.
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measurement. This frequency component also exists in the signal before the pulse and is
thus believed to be a noise from some building services equipment. It should be noted that
STFT was not able to recover clearly the instant when the pulse reached the microphone.
The decays of all the spectral levels are substantially linear with time (not shown here). No
evidence of strong echo has been found.

The corresponding time}frequency map obtained by WT using the FFT method of
Newland [17] without backward integration is shown in Figure 14(b). The frequency
resolution of this calculation is 23)5 Hz. Figure 14(b) also reveals the higher energy content
at frequencies below 1100 Hz and the weak energy content at frequencies below 100 Hz.
However, the instant the pulse reached the microphone is not very clearly recovered.
Basically, Figure 14(b), though with many noises especially at increased time, looks similar
to Figure 14(a). This appears very di!erent from those of Martin et al. [14] where STFT and
WT (constant-Q type) gave di!erent results in the analysis of the impulse response of a hall.
One can also notice from Figure 14(b) that the prevailing 2100 Hz noise is not revealed by
WT, suggesting that STFT may perform better in this analysis. Besides, the results
presented in Figures 10 and 14 tend to suggest that the STFT can provide a better
signal-to-noise ratio.

The reverberation times shown in Figure 15 are calculated from the decay constants
determined from Figure 14 after applying the backward integration. The corresponding
data obtained by direct one-third octave band "ltering are also include in Figure 15 as
a reference. Direct constant narrow-bandwidth "ltering of the signal to determine the decay
rates was not attempted because the associated zero phase-shift digital "lters may not be
reliable as the desired frequency resolution in the present time}frequency analysis is only
around 0)2% of the sampling rate. The conventional Sabine's or Eyring's formulae [13] for
the reverberation time calculation are not used here as the sound absorption coe$cients of
the room boundaries are not exactly known. Since the components having frequencies
below 100 Hz are weak (Figure 14), the discussion is focussed on the frequency range
between 100 and 5000 Hz.



Figure 14. Time}frequency map of impulse response. (a) 20 log
10

D F (u, q) D; (b) 20 log
10

D= (u, q) D.
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As expected, low-frequency noise appears to have a longer decay time than the higher
frequency ones. It can also be observed from Figure 15(a) that the reverberation times
obtained from STFT agree in principle with those obtained by the direct digital "ltering
method in the whole frequency range, especially at frequencies below 1000 Hz. These



Figure 15. Variation of reverberation time with frequency. (a) STFT; (b) WT:**, computed from transforms;
K, one-third octave bands.
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frequency components contain the majority of the sound energy. The results of WT scatter
seriously at frequencies above 1000 Hz. This is due to the non-linear decay curves obtained
after the backward integration at some frequencies (not shown here). This higher degree of
scattering is consistent with the results of the white-noise decay shown in Figure 4. The
results of WT at low frequencies are again not satisfactory.

4. CONCLUSIONS

In the present investigation, the performance of the short-time Fourier transform and the
wavelet transform using the new harmonic wavelets on resolving the decay constants of
exponentially time-decaying signals is studied. Both arti"cial and experimental signals are
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used. A brief theoretical analysis on the issue is also given. This paper is focused on narrow
and constant bandwidth applications.

Results show that both time-frequency methods work satisfactorily if the time-decaying
signal contains only one frequency component. However, when multi-frequency or
broadband signals are concerned, whether they are arti"cially generated or obtained from
experiments, the short-time Fourier transform can recover the dominant frequency
components and the corresponding decay constants with a reliable accuracy. The
associated results do not depend on the percentage of overlap.

The wavelet transform implemented by the harmonic wavelets produces accurate results
for arti"cial discrete signals. Though with larger scattering, it recovers the decay constants
of broadband signals within engineering acceptable accuracy. However, this transform does
not perform satisfactorily on the vibration signal and room impulse response obtained from
experiments. It can only recover the relatively stronger frequency components from the
vibration signal and gives rise to signi"cant error when resolving the reverberation times of
relatively higher-frequency components in a room impulse response. Its performance at low
frequencies is also not satisfactory.

The present results suggest that the short-time Fourier transform performs better than
the variable bandwidth wavelet transform in analyzing exponentially decaying signals,
especially those obtained from experiments.
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